Answer:
Explanation:
Given
radius of circular region r=1.50 mm
Magnetic Field
time t=130 ms
Flux is given by
change in Flux
Emf induced is
The answer is ultra violet radiation. From the air
<span>According to the formula :
</span><span>a=<span><span>ΔV / </span><span>ΔT
</span></span></span><span>When a body is moving with a uniform velocity, the acceleration is zero. That's it. You should remember, that velocity is not constant whereas speed is constant.</span>
Answer:
a) 0.0288 grams
b)
Explanation:
Given that:
A typical human body contains about 3.0 grams of Potassium per kilogram of body mass
The abundance for the three isotopes are:
Potassium-39, Potassium-40, and Potassium-41 with abundances are 93.26%, 0.012% and 6.728% respectively.
a)
Thus; a person with a mass of 80 kg will posses = 80 × 3 = 240 grams of potassium.
However, the amount of potassium that is present in such person is :
0.012% × 240 grams
= 0.012/100 × 240 grams
= 0.0288 grams
b)
the effective dose (in Sieverts) per year due to Potassium-40 in an 80- kg body is calculate as follows:
First the Dose in (Gy) =
=
=
Effective dose (Sv) = RBE × Dose in Gy
Effective dose (Sv) =
Effective dose (Sv) =
Answer:
636.4 J
Explanation:
The potential energy between one of the charges at the corner of the square and the fifth identical charge is U = kq²/r where q = charge = +50 × 10⁻⁶ C and r = distance from center of square. = √2 m (since the midpoint of the sides = 1 m, so the distance from the charge at the corner to the center is thus √(1² + 1²) = √2)
Since we have four charges, the additional potential energy to move the charge to the centre of the square is U' = 4U = 4kq²/r
U' = 4kq²/r
= 4 × 9 × 10⁹ Nm²/C² (+50 × 10⁻⁶ C)²/√2 m
= 900 Nm²/√2 m
= 636.4 J