Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.
Answer:
Shadows are made by blocking light. Light rays travel from a source in straight lines. If an opaque (solid) object gets in the way, it stops light rays from traveling through it. The size and shape of a shadow depend on the position and size of the light source compared to the object.
Explanation:
Answer:
221.17 kJ
Explanation: Note the heat of vaporization is in kJ/mol,then to determine the number of moles of water: divide the mass by 18. Then multiply the number of moles by the molar heat of vaporization of water.
N = 97.6 ÷ 18
Q=molar heat *moles
Q = (40.79) * (97.6 ÷ 18)
This is approximately 221.17 kJ