Answer:
Igneous rocks do not contain any fossils.
Explanation:
This is because any fossils in the original rock will have melted when the rock melted to form magma. Sedimentary rocks are formed from the broken remains of other rocks that become joined together.
It would be 1A bc then the +1 charge will cancel out chlorine’s -1 charge
Answer:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Explanation:
According to Brönsted-Lowry acid-base theory:
- An acid is a substance that donates H⁺.
- A base is a substance that accepts H⁺.
When methylamine reacts with water, it behaves as a Brönsted-Lowry base, according to the following reaction.
CH₃NH₂(aq) + H₂O(l) ⇄ CH₃NH₃⁺(aq) + OH⁻(aq)
The basic equilibrium constant (Kb) is:
Kb = [CH₃NH₃⁺] × [OH⁻] / [CH₃NH₂]
Answer:
Graphite is insoluble in water and organic solvents - for the same reason that diamond is insoluble. Attractions between solvent molecules and carbon atoms will never be strong enough to overcome the strong covalent bonds in graphite. conducts electricity.
Explanation:
Brainlest please?
The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =
Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =
Thus vant hoff factor for sodium chloride in X is 1.9