Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J
Answer:
d: ice is less dense than liquid water.
Explanation:
hope this helps! ( brainliest would be appreciated :)
~mina
Answer:
1: 6.18 cm
2: 52.5609 degrees
Explanation:
We have the pendulum speed at the origin, and in that moment, all energy is kinetic, so we can calculate the pendulum energy by:
Ec = 0.5*m*v^2 = 0.5*0.015*1.1^2 = 0.0091 J
Now with that energy, we can calculate the height the pendulum will reach, as in that moment, the kinetic energy is totally converted to gravitational potencial energy:
Eg = m*g*h = 0.0091
0.015 * 9.81 * h = 0.0091
h = 0.0091 / (0.015 * 9.81 ) = 0.0618 m = 6.18 cm
Looking at the image attached, we can see that the pendulum will form a triangle, and one of the cathetus will be the length of the pendulum minus the height it went up, and the hypotenusa will be the pendulum length.
So, we know that the sine of the angle will be the division between the opposite cathetus and the hypotenusa:
sin(angle) = (30-6.18)/30 = 23.82/30 = 0.794 -> angle = 52.5609 degrees
<span>The green car traveled a shorter distance, but the displacement of the cars was equal.</span>
Answer:
I believe it is C, Potential
Explanation:
Google, since all types are either kinetic or potential, so it wouldn't make sense if kinetic was itself. I also know for a fact it isn't Chemical