Answer:
See description below.
Step-by-step explanation:
A distance -time graph of Maria's journey would look like a very steep line with slope 100 meters/1 minute until minute 4. At minute 4, Maria stopped to talk so it would like a horizontal flat line at that same distance for 3 minutes. This means at minute 7, Maria began walking again. From minute 7 on would be a positive line heading up with a slope of 75 meters/ 1 minute.
Answer:
7-E -4
Step-by-step explanation:
My school supplyes us with a calculator and lucky for you it does scientific notation
Any polynomial's graph cannot have two simultaneous maxima, so they must contain a minima between them. Thus, the total number of turning points of the graph is 3. Generally, when plotting a polynomial, the number of turning points is:
n = d -1; where d is the degree of the polynomial and n is the number of turning points. Thus, this function's degree must be at least 4. The answer is b.
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the Double Angle Identity: sin 2Ф = 2sinФ · cosФ
Use the Sum/Difference Identities:
sin(α + β) = sinα · cosβ + cosα · sinβ
cos(α - β) = cosα · cosβ + sinα · sinβ
Use the Unit circle to evaluate: sin45 = cos45 = √2/2
Use the Double Angle Identities: sin2Ф = 2sinФ · cosФ
Use the Pythagorean Identity: cos²Ф + sin²Ф = 1
<u />
<u>Proof LHS → RHS</u>
LHS: 2sin(45 + 2A) · cos(45 - 2A)
Sum/Difference: 2 (sin45·cos2A + cos45·sin2A) (cos45·cos2A + sin45·sin2A)
Unit Circle: 2[(√2/2)cos2A + (√2/2)sin2A][(√2/2)cos2A +(√2/2)·sin2A)]
Expand: 2[(1/2)cos²2A + cos2A·sin2A + (1/2)sin²2A]
Distribute: cos²2A + 2cos2A·sin2A + sin²2A
Pythagorean Identity: 1 + 2cos2A·sin2A
Double Angle: 1 + sin4A
LHS = RHS: 1 + sin4A = 1 + sin4A
Amanda's method is linear because the number of minutes increased by an equal number every week.