Answer:
glycerol-3-phosphate, ADP, H⁺
Explanation:
The reaction of converting glycerol to glycerol-3-phosphate which makes is unfavorable and is coupled with the second reaction which involves conversion of ATP to ADP which is high energetically favorable.
Reaction 1: Glycerol + HPO₄²⁻ ⇒ Glycerol-3-phosphate + water
Reaction 2: ATP + H₂O ⇒ ADP + HPO₄²⁻ + H⁺
The coupled reaction of both the reactions become favorable. Thus, the overall coupled reaction is:
<u>Glycerol + ATP ⇒ Glycerol-3-phosphate + ADP + H⁺</u>
The net products are = glycerol-3-phosphate, ADP, H⁺
Answer:
<h3>no it is not allowed</h3>
Explanation:
<h3>Liwis structure shows the elements symbol with dots thet represents valance electrons ; in second row elements their atomic number is 3 up to 10 , from Li up to Ne from their electron configuration their valance electron will be from 1 up to 8 respectivelly ,if lewis structure represents the element with it is symbol and dots that represents valance electron the second row elements cannot have more than an octet of valance electrons surrounding it.</h3>
<h3>I think it is help ful for you </h3>
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.
Which type of solution are you talking about?