'cause many alpha-particle goes without any deflection........
<span>2Fe2O3(s) + 3C(s) →4 Fe(s) + 3CO2(g)
3 mol 3mol
4 mol x mol
x=4*3/3= 4.0 mol
</span>2Fe2O3(s) + 3C(s) →4 Fe(s) + 3CO2(g)<span>
2 mol 3 mol
14 mol x mol
x=14*3/2= 21.0 mol</span>
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.
Answer:
Explanation:
Hello there!
In this case, according to the Charles' law equation which help us to understand the directly proportional relationship between volume and temperature:
Thus, by solving for the final temperature, T2, and making sure we use the temperatures in Kelvin, we can calculate the final temperature as shown below:
Best regards!
Best regards!
Answer:
a)
b)
Explanation:
a) The reaction:
The free-energy expression:
The element wich is reduced is the Fe and the one that oxidates is the Mg:
The electrons transfered (n) in this reaction are 2, so:
b) If you have values of enthalpy and enthropy you can calculate the free-energy by:
with T in Kelvin