Answer:
91.017N
Explanation:
Parameters
L=4.67m, m=0.192kg, t = 0.794s, The pulse makes four trips down and back along the cord, we have 4 +4 =8 trips( to and fro)
so N= no of trips = 8, From Wave speed(V) = N *L/t , we have :
V= 8*4.67/0.794 = 47.0529 m/s.
We compute the cords mass per length, Let it be P
P = M/L = 0.192/4.67 = 0.04111 kg/m
From T = P * V^2 where T = Tension, we have
T = 0.04111 * (47.0529)^2
T = 91.017N.
The tension in the cord is 91.017N
Answer:
Solution:
As per the question:
Mass of first object, m = 120 kg
Mass of second object, m' = 420 kg
Mass of the third object, M = 69.0 kg
Distance between the m and m', d = 0.380 m
Now,
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m:
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m':
To calculate the gravitational force on the object of mass, M placed mid-way due to mass, m and m':
Answer:MA = 15
Explanation:The mechanical advantage for an inclined plane is MA=l/h or length divided by height. So, plugging these variables into the equation would have it set up like this: MA = 30/2. When 30 is divided by 2 you get your answer for mechanical advantage, which would be 15
Answer:
W = 7591.56 J
Explanation:
given,
distance of the box, d = 37 m
Force for pulling the box, F = 217 N
angle of inclination with horizontal,θ = 19°
We know,
Work done is equal to product of force and the displacement.
W = F.d cos θ
W = 217 x 37 x cos 19°
W = 7591.56 J
Hence, the work done to pull the box is equal to W = 7591.56 J
d = distance to which the grocery cart is pushed = 18 m
f = frictional force = 37.5 N
θ = angle of force below the horizontal = 27.5 deg
W = gravitational force in downward direction
Θ = angle between gravitational force in down direction and displacement in horizontal direction = 90
U = work done on the cart by gravitational force
work done on the cart by gravitational force is given as
U = W d CosΘ
inserting the values
U = W (18) Cos90
U = 0 J