Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
Answer: yes true
Explanation: 1. Toward the middle of a river, water tends to flow fastest; toward the margins of the river it tends to flow slowest. 2. In a meandering river, water will tend to flow fastest along the outside bend of a meander, and slowest on the inside bend.
<span>Mol is the unit of amount of substance. It is equal to 6.02 x 10^23 molecules. Now, One mol of Sodium chloride (NaCl) contains 6.022x 10^23 molecules of NaCl. Also, the number atoms of both Na (sodium) and Cl (chlorine) will be equal. Similatly, One mol of Aluminium Chloride (AlCl3) contains 6.022x 10^23 molecules of (AlCl3) but the ratio of Al and Cl atoms will be 1:3</span>
<u>Answer:</u> The correct statement is low temperature only, because entropy decreases during freezing.
<u>Explanation:</u>
The relationship between Gibb's free energy, enthalpy, entropy and temperature is given by the equation:
Where,
= change in Gibb's free energy
= change in enthalpy
T = temperature
= change in entropy
It is given that freezing of methane is taking place, which means that entropy is decreasing and is becoming negative. It is also given that the reaction is an exothermic reaction, this means that the is also negative.
For a reaction to be spontaneous, must be negative.
From above equations, it is visible that will be negative only when the temperature will be low.
Hence, the correct statement is low temperature only, because entropy decreases during freezing.
Here you go! Feel free to ask questions!