Answer: The best reason the scientific community will accept a theory is if it is proven.
Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives = 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity = = = 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.
Answer:
ΔHorxn = - 11.79 KJ
Explanation:
2 SO 2 ( g ) + O 2 ( g ) ⟶ 2 SO 3 ( g )
The standard enthalpies of formation for SO 2 ( g ) and SO 3 ( g ) are Δ H ∘ f [ SO 2 ( g ) ] = − 296.8 kJ / mol Δ H ∘ f [ SO 3 ( g ) ] = − 395.7 kJ / mol
From the reaction above, 2 mol of SO2 reacts to produce 2 mol of SO3. Assuming ideal gas behaviour,
1 mol = 22.4l
x mol = 2.67l
Upon cross multiplication and solving for x;
x = 2.67 / 22.4 = 0.1192 mol
0.1192 mol of SO2 would react to produce 0.1192 mol of SO3.
Amount of heat is given as;
ΔHorxn = ∑mΔHof(products) − ∑nΔHof(reactants)
Because O2(g) is a pure element in its standard state, ΔHοf [O2(g)] = 0 kJ/mol.
ΔHorxn = 0.1192 mol * (− 395.7 kJ / mol) - 0.1192 mol * ( − 296.8 kJ / mol)
ΔHorxn = - 47.17kj + 35.38kj
ΔHorxn = - 11.79 KJ
Answer:
Explanation:
Given that,
A typical coffee mug holds about 355,000 microliters of liquid.
Also, 1 L = 0.001 kL
So, a typical coffee mug holds about or of liquid.
We need to convert it into Scientific notation.
We will shift 4 zeros to right. As a result,
So, the mug will hold of liquid.
Mark Brainiest please
Answer:
1.8 x 10^24
One mole of helium has 6.02 x 10^23 atoms, thise number is also called Avogadro's number or constant.
If we need number of atoms for 3 moles so simply, multiply 3 by 6.02 x 10^23
so,
Number of atoms for 3 moles = 3 x ()
Number of atoms will be = 1.806x10^24