In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
7.5 x 10⁻¹¹m. An electromagnetic wave of frecuency 4.0 x 10¹⁸Hz has a wavelength of 7.5 x 10⁻¹¹m.
Wavelength is the distance traveled by a periodic disturbance that propagates through a medium in a certain time interval. The wavelength, also known as the space period, is the inverse of the frequency. The wavelength is usually represented by the Greek letter λ.
λ = v/f. Where v is the speed of propagation of the wave, and "f" is the frequency.
An electromagnetic wave has a frecuency of 4.0 x 10 ¹⁸Hz and the speed of light is 3.0 x 10⁸ m/s. So:
λ = (3.0 x 10⁸ m/s)/(4.0 x 10¹⁸ Hz)
λ = 7.5 x 10⁻¹¹m
Answer: Stars are bright and have the ability to emit lights of various wavelength. The color of a star plays a significant role. It helps us in determining its temperature. It ranges from reddish color to a bluish-white color. A red color star indicates that the star is of low temperature, whereas a bluish-white star indicates that the star is of high temperature.
The particles of the medium (slinky in this case) move up and down (choice #2) in a transverse wave scenario.
This is the defining characteristic of transverse waves, like particles on the surface of water while a wave travels on it, or like particles in a slack rope when someone sends a wave through by giving it a jolt.
The other kind of waves is longitudinal, where the particles of the medium move "left-and-right" along the direction of the wave propagation. In the case of the slinky, this would be achieved by giving a tensioned slinky an "inward" jolt. You would see that such a jolt would give rise to a longitudinal wave traveling along the length of the tensioned slinky. Another example of longitudinal waves are sound waves.
Answer:
b. Decreases
Explanation:
The total resistance of a series circuit is equal to the sum of the individual resistances:
(1)
Therefore, as we add more lamps, the total resistance increases (because we add more positive tems in the sum in eq.(1).
The current in a circuit is given by Ohm's law:
where V is the voltage provided by the power source and is the total resistance. We notice that the current, I, is inversely proportional to the total resistance: therefore, when more lamps are added to the series circuit, the total resistance increases, and therefore the current in the circuit decreases.