<span>Find the equation of the line parallel to the line y = 4x – 2 that passes through the point (–1, 5).
</span>y = 4x – 2 has slope = 4
<span>parallel lines have same slope so slope = 4
</span><span>passes through the point (–1, 5).
</span><span>y = mx+b
5 = 4(-1) + b
b =9
equation
y = 4x + 9
answer
The slope of y = 4x – 2 is 4
The slope of a line parallel to y = 4x – 2 is 4
The equation of the line parallel to y = 4x – 2 that passes through the point (–1, 5) is y = 4x + 9</span>
Answer:
m∠CEB is 55°
Step-by-step explanation:
Since ∠ADE = 55°, and ∠ADE is half of ∠ADC because ED bisects ∠ADC. Bisect means to cut in half.
∠ADC = 110° because it is double of ∠ADE.
Since AB║CD and AD║BC, the two sets of parallel lines means this shape is a parallelogram. In parallelograms, <u>opposite angles have equal measures</u>.
∠ADC = ∠CBE = 110°
All quadrilaterals have a sum of angles 360°. Since ∠DCB = ∠BAD and we know two of these other angles are each 110°:
360° - 2(110°) = 2(∠DCB)
∠DCB = 140°/2
∠DCB = ∠BAD = 70°
∠DCB was bisected by EC, which makes each divided part half.
∠DCE = ∠BCE = (1/2)(∠DCB)
∠DCE = ∠BCE = (1/2)(70°)
∠DCE = ∠BCE = 35°
All triangles' angles sum to 180°.
In ΔBCE, ∠BCE = 35° and ∠CBE = 110°.
∠CEB = 180° - (∠BCE + ∠CBE)
∠CEB = 180° - (35° + 110°)
∠CEB = 55°
Therefore m∠CEB is 55°.
Answer:
Step-by-step explanation:
Suppose, on the contrary, a and b are both odd integers, that is:
m and n being some integers numbers.
This way you have to:
The last expression cannot be divisible by 4 since 2 is not divisible by 4. The previous conclusion leads to a contradiction, which was generated from the assumption that a and b were both odd integers. In conclusion, at least one of the two a and b should be an even integer