That depends on the mass of the object, and the unit of the '46.4' .
If the '46.4' is ' meters per second² ' , then the force required is
(mass of the object in kilograms) x (46.4) newtons .
Answer:
250 m
Explanation:
The car in this problem is moving of uniform accelerated motion, so we can use the following suvat equation:
where
s is the distance covered
u is the initial velocity
t is the time
a is the acceleration
Assuming the car starts from rest,
u = 0
Also we know that
a = 5 m/s^2 (acceleration of the car)
t = 10 s
Substituting, we find the distance covered:
Answer:
No image will be observed.
Explanation:
Images that are created by mirrors are virtual images. This virtual image can only be seen by an observer. In this case, an infinite number of images or no image will be created here as both will be reflecting their own images. Light will continuously bounce back and forth reflecting the same image.
Answer:
(A) Visible
Explanation:
- The section of the electromagnetic spectrum that humans can generally see is called visible light.
White light is visible light and the range of visible wavelengths ranges from 400 - 700 nanometers.
Answer:
In a time-position graph (s-t graph):
slope = velocity
In a time-velocity graph (v-t graph):
slope = acceleration
area under graph = change in displacement (distance travelled)
In a time-acceleration graph (a-t graph):
area under graph = change in velocity