Answer:
0.897 J/g°C
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass (M) of substance = 155g
Initial temperature (T1) = 25.0°C
Final temperature (T2) = 40°C
Change is temperature (ΔT) = T2 – T1 = 40°C – 25.0°C = 15°C
Heat Absorbed (Q) = 2085 J
Specific heat capacity (C) of the substance =?
Step 2:
Determination of the specify heat capacity of the substance.
Applying the equation: Q = MCΔT, the specific heat capacity of the substance can be obtained as follow:
Q = MCΔT
C = Q/MΔT
C = 2085 / (155 x 15)
C = 0.897 J/g°C
Therefore, the specific heat capacity of the substance is 0.897 J/g°C
More sleep and longer days or nights
Answer:
The reasons why the seemingly floating bubbles disappear was that they tend to loss their latent heat to the water molecules at the surface water.
Explanation:
Heat energy has a considerable effect on the velocity of molecules including water. The water molecules below the container will receive much more heat energy than those above it. This heat energy in the form of specific heat capacity and latent heat that result in the increase in the speed of individual molecules of water and finally to the escape of the molecules to a colder region of the container, in this case the upper region. At the collision of the bottom water to the surface water, they tend to exchange their heat content, the hotter molecules will lose their heat to the cold ones. When the formerly hot molecules encounter this, it will result in lowering the temperature and consequentially to the reduction of their movement, once in the form of bubble, now become ordinary water. This convectional transfer of heat energy will continue until the whole system has a uniform temperature depending on the consistency of the heat source.
Explanation:
hope these help you answer
Answer: Option (B) is the correct answer.
Explanation:
When a fatty acid contains high number of double bonds then its unsaturation will also be high and hence, it will consume greater number of equivalents of hydrogen.
In corn oil, there are no unsaturated sites are present.
In olive oil, there is one unsaturated site with majority of oleic acid. In olive oil, there are more than 70% of total unsaturated oils.
In lard oil, there are around 60% of unsaturated oils.
In herring oil, there are highest number of saturated fatty acids and lowest polyunsaturated acids.
Thus, we can conclude that out of the given options, olive oils would consume the greatest number of equivalents of hydrogen when subject to catalytic hydrogenation.