Answer:
Most positive = rubidium
Most negative = fluorine
Explanation:
Electron affinity of an element is the energy released when an electron is attached to a neural atom to form an ion in its gaseous state.
X + e⁻ → X⁻
Electron affinity is similar to electronegativity which is the tendency at which an atom accepts an ion towards itself.
Electron affinity increases across the period and decreases down the group in the periodic table.
In the above option,
Fluorine has the highest electron affinity
Rubidium has the lowest electron affinity
Tellurium and then finally Phosphorus
Helium in this case would have the lowest electron affinity because it has filled orbital and does not require any electron to attain stability. Technically, Helium has the lowest or is expected to have the lowest electron affinity which is close to zero according to quantum mechanics.
Most positive = rubidium
Most negative = fluorine.
You can check periodic table for their exact values
Answer:
Rusting
I guess
Explanation:
Cause in iron if a brown coating appears it is called rusting
<span>c. energy needed to remove an electron from an atom or ion in the gas phase</span>
True but no one know Exactly how many stars there are
Answer:
164.3g of NaCl
Explanation:
Based on the chemical equation:
CaCl2 + 2NaOH → 2NaCl + Ca(OH)2
<em>where 1 mole of CaCl2 reacts with 2 moles of NaOH</em>
To solve this question we must convert the mass of CaCl2 to moles. Using the chemical equation we can find the moles of NaCl and its mass:
<em>Moles CaCl2 -Molar mass: 110.98g/mol-</em>
156.0g CaCl₂ * (1mol / 110.98g) = 1.4057 moles CaCl2
<em>Moles NaCl:</em>
1.4057 moles CaCl2 * (2mol NaCl / 1mol CaCl2) = 2.811 moles NaCl
<em>Mass NaCl -Molar mass: 58.44g/mol-</em>
2.811 moles NaCl * (58.44g / mol) = 164.3g of NaCl