Answer:
Option C is the correct answer.
Explanation:
Absolute pressure is sum of gauge pressure and atmospheric pressure.
That is
We have
Substituting
Option C is the correct answer.
Where's the diagram for question 1?
I say that the answere would be B
Answer:
Explanation:
We have to find electric potential V at a distance r.
a) For r>R,
The electric field in the cylinder is given by
E.A equating it to the other electric field given by
б.A/ε₀
Here the area of cylinder is given by= 2*3.14*r*L
While for the outside, the area= 2*3.14*R*L
Equating both, we get
E= бR/rε₀
Now,
The potential difference is given as:
ΔV= -бR/rε₀ and integrating right side with respect to dr under limits r and R.
Where ΔV= V₀-V
So solving we get
V₀=V-бR/ε₀ln (r/R)
b) For r<R i.e. inside the cylinder
There will be no electric field produced as E=0
So ultimately Vin= V
c) V=0 at r= infinity.
<u>Answer:</u>
<h3>During wet and freezing temperatures, ice is able to form at a faster pace on bridges because freezing winds blow from above and below and both sides of the bridge, causing heat to quickly escape. The road freezes slower because it is merely losing heat through its surface.</h3>
<u>Sources:</u>
-- https://intblog.onspot.com/en-us/why-do-bridges-become-icy-before-roads
and
-- https://www.accuweather.com/en/accuweather-ready/why-bridges-freeze-before-roads/687262
I hope this helps you! ^^