The number of terms in the given arithmetic sequence is n = 10. Using the given first, last term, and the common difference of the arithmetic sequence, the required value is calculated.
<h3>What is the nth term of an arithmetic sequence?</h3>
The general form of the nth term of an arithmetic sequence is
an = a1 + (n - 1)d
Where,
a1 - first term
n - number of terms in the sequence
d - the common difference
<h3>Calculation:</h3>
The given sequence is an arithmetic sequence.
First term a1 = = 3/2
Last term an = = 5/2
Common difference d = 1/9
From the general formula,
an = a1 + (n - 1)d
On substituting,
5/2 = 3/2 + (n - 1)1/9
⇒ (n - 1)1/9 = 5/2 - 3/2
⇒ (n - 1)1/9 = 1
⇒ n - 1 = 9
⇒ n = 9 + 1
∴ n = 10
Thus, there are 10 terms in the given arithmetic sequence.
learn more about the arithmetic sequence here:
brainly.com/question/503167
#SPJ1
Disclaimer: The given question in the portal is incorrect. Here is the correct question.
Question: If the first and the last term of an arithmetic progression with a common difference are , and 1/9 respectively, how many terms has the sequence?
Answer:
44.55
Step-by-step explanation:
9 percent of 495
3 = $9.81
1 = $?
To find this you have to do 9.81/3.
Hope this helps and have a nice day!!
Answer:
0.27
Step-by-step explanation:
You take 1.75, and subtract 1.48 from it. 1.75
<u>- 1.48</u>
0.27