Answer:
Step-by-step explanation:
Since none of the answer choices match the drawing of the gardener, we assume the question is referring to the drawing of the partner.
The gardener's drawing is 1/4 of actual size. So, in terms of the gardener's drawing, actual size is ...
gardener's drawing = (1/4)actual size
actual size = 4(gardener's drawing)
__
The partner's drawing is 1/20 of actual size, so is ...
partner's drawing = actual size/20 = (4(gardener's drawing))/20
partner's drawing = (4/20)(gardener's drawing)
partner's drawing = (gardener's drawing)/5
__
Then the {length, width} of the partner's drawing are ...
partner's drawing {length, width} = {15 in, 10 in}/5 = {3 in, 2 in}
The partner's drawing has a length of 3 inches and a width of 2 inches.
<span>2 x^2 y^6 z^5
5 x^4 y^5 z^3
---------------
10 ^6 ^11 ^8</span>
By "which is an identity" they just mean "which trigonometric equation is true?"
What you have to do is take one of these and sort it out to an identity you know is true, or...
*FYI: You can always test identites like this:
Use the short angle of a 3-4-5 triangle, which would have these trig ratios:
sinx = 3/5 cscx = 5/3
cosx = 4/5 secx = 5/4
tanx = 4/3 cotx = 3/4
Then just plug them in and see if it works. If it doesn't, it can't be an identity!
Let's start with c, just because it seems obvious.
The Pythagorean identity states that sin²x + cos²x = 1, so this same statement with a minus is obviously not true.
Next would be d. csc²x + cot²x = 1 is not true because of a similar Pythagorean identity 1 + cot²x = csc²x. (if you need help remembering these identites, do yourslef a favor and search up the Magic Hexagon.)
Next is b. Here we have (cscx + cotx)² = 1. Let's take the square root of each side...cscx + cotx = 1. Now you should be able to see why this can't work as a Pythagorean Identity. There's always that test we can do for verification...5/3 + 3/4 ≠ 1, nor is (5/3 + 3/4)².
By process of elimination, a must be true. You can test w/ our example ratios:
sin²xsec²x+1 = tan²xcsc²x
(3/5)²(5/4)²+1 = (4/5)²(5/3)²
(9/25)(25/16)+1 = (16/25)(25/9)
(225/400)+1 = (400/225)
(9/16)+1 = (16/9)
(81/144)+1 = (256/144)
(81/144)+(144/144) = (256/144)
(256/144) = (256/144)
The numbers decrease by 6.
-1, -8, -14, -20, -26, -32, -38, -44, -50, -56, -62, -68, -74, -80, -86, -92, -98, -104, -110, -116, -122, -128, -134, -140, -146
I would say you would subtract 180 minus 76 because a straight line equals 180 if I’m wrong I’m sorry