Answer:
Current = 3 Amperes
Explanation:
Given the following data;
Quantity of charge = 6 C
Time = 2 seconds
To find how many amps are moving through this wire;
Mathematically, the quantity of charge passing through a conductor is given by the formula;
Quantity of charge = current * time
Substituting into the formula, we have;
6 = current * 2
Current = 6/2
Current = 3 Amperes
Answer:
The dart with the small mass will travel the farthest distance.
Explanation:
Acceleration is proportional to force times mass, and inertia is proportional to mass. Inertia is the reluctance of a moving body to stop, and a stationary body to start moving (inertia increses with mass). Assuming they both have the same aerodynamic design, and that they are both launched with the same force applied for the same time duration, the dart with less small mass will accelerate faster than the big mass dart. From this we can see that the small dart will have covered a longer distance before the effect of the force stops, when compared to the more massive dart.
Answer:
8F_i = 3F_f
Explanation:
When two identical spheres are touched to each other, they equally share the total charge. Therefore, When neutral C is first touch to A, they share the initial charge of A equally.
Let us denote that the initial charge of A and B are Q. Then after C is touched to A, their respective charges are Q/2.
Then, C is touched to B, and they share the total charge of Q + Q/2 = 3Q/2. Their respective charges afterwards is 3Q/4 each.
The electrostatic force, Fi, in the initial configuration can be calculated as follows.
We are given that,
We need to find when
The equation that relates x and can be written as,
Differentiating each side with respect to t, we get,
Replacing the value of the velocity
The value of could be found if we know the length of the beam. With this value the equation can be approximated to the relationship between the sides of the triangle that is being formed in order to obtain the numerical value. If this relation is known for the value of x = 6ft, the mathematical relation is obtained. I will add a numerical example (although the answer would end in the previous point) If the length of the beam was 10, then we would have to
Search light is rotating at a rate of 0.96rad/s