<span>
The purpose of a gasoline car engine is to convert gasoline into motion
so that your car can move. Currently the easiest way to create motion
from gasoline is to burn the gasoline inside an engine.
Therefore, a car engine is an internal combustion engine -- combustion takes place internally.
There is such a thing as an external combustion engine. A steam engine
in old-fashioned trains and steam boats is the best example of an
external combustion engine. The fuel (coal, wood, oil, whatever) in a
steam engine burns outside the engine to create steam, and the steam
creates motion inside the engine. Internal combustion is a lot more
efficient (takes less fuel per mile) than external combustion, plus an
internal combustion engine is a lot smaller than an equivalent external
combustion engine. This explains why we don't see any cars using steam
engines.
To understand the basic idea behind how a reciprocating internal
combustion engine works, it is helpful to have a good mental image of
how "internal combustion" works.
One good example is an old Revolutionary War cannon. You have probably
seen these in movies, where the soldiers load the cannon with gun powder
and a cannon ball and light it. That is internal combustion, but it is
hard to imagine that having anything to do with engines.
A potato cannon uses the basic principle behind any reciprocating
internal combustion engine: If you put a tiny amount of high-energy fuel
(like gasoline) in a small, enclosed space and ignite it, an incredible
amount of energy is released in the form of expanding gas. You can use
that energy to propel a potato 500 feet. In this case, the energy is
translated into potato motion. You can also use it for more interesting
purposes. For example, if you can create a cycle that allows you to set
off explosions like this hundreds of times per minute, and if you can
harness that energy in a useful way, what you have is the core of a car
engine! </span>
Answer:
187 J
Explanation:
First Law of Thermodynamics :
ΔQ = ΔW + ΔU
ΔQ : Heat. If it added to system then positive and if it is rejected by system then negative.
ΔW : Work. If it done by the system then positive and if it is done on system then negative.
ΔU : Internal Energy. If it positive then temperature of system increased and if it is negative then temperature of system decreased.
ΔQ = 79 J
ΔW = - 108 J
ΔU = ?
substituting the value in the equation:
79 = -108 + ΔU
∴ ΔU = 187 J
What is the tangential velocity of a record player which makes 11 revolutions in 20 seconds? Help hello
Answer:
a) The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car with uniform velocity is 100 meters.
Explanation:
a) Calculate the uniform velocity travelled by the car:
The uniform velocity is the final velocity (), in meters per second, of the the uniform accelerated stage:
(1)
Where:
- Initial velocity, in meters per second.
- Acceleration, in meters per square second.
- Time, in seconds.
If we know that , and , then the uniform velocity is:
The uniform velocity travelled by the car is 10 meters per second.
(Point b has been erased by the user)
c) The distance travelled by the car (), in meters, with uniform velocity is calculated by the following kinematic expression:
(2)
If we know that and , then the distance travelled is:
The distance travelled by the car with uniform velocity is 100 meters.
Answer:
A frame of reference is the location from which motion is perceived and measured. For all observers, the speed of light remains constant.
Explanation: