Answer:
F = 1263.03 N
Explanation:s
given,
mass of the disk thrower = 100 Kg
mass of the disk = 2 Kg
angular speed of the disk = 4 rev/s
arm outstretched = 1 m
centripetal force of the disk in the circular path
F = m ω² r
ω = 4 x 2 x π
ω = 25.13 rad/s
F = m ω² r
F = 2 x 25.13² x 1
F = 1263.03 N
hence, centripetal force equal to the F = 1263.03 N
Answer:
i 5.3 cm ii. 72 cm
Explanation:
i
We know upthrust on iron = weight of mercury displaced
To balance, the weight of iron = weight of mercury displaced . So
ρ₁V₁g = ρ₂V₂g
ρ₁V₁ = ρ₂V₂ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₂ = density of mercury = 13.6 g/cm³ and V₂ = volume of mercury displaced = ?
V₂ = ρ₁V₁/ρ₂ = 7.2 g/cm³ × 10³ cm³/13.6 g/cm³ = 529.4 cm³
So, the height of iron above the mercury is h = V₂/area of base iron block
= 529.4 cm³/10² cm² = 5.294 cm ≅ 5.3 cm
ρ₁V₁g = ρ₂V₂g
ii
ρ₁V₁ = ρ₃V₃ where ρ₁ = density of iron = 7.2 g/cm³ and V₁ = volume of iron = 10³ cm³ and ρ₃ = density of water = 1 g/cm³ and V₃ = volume of water displaced = ?
V₃ = ρ₁V₁/ρ₃ = 7.2 g/cm³ × 10³ cm³/1 g/cm³ = 7200 cm³
So, the height of column of water is h = V₃/area of base iron block
= 7200 cm³/10² cm² = 72 cm
Answer:
Explanation:
solution is in the attachment below
Answer: The reason for the differences in density is the composition of rock in the plates. When two plates come in contact with each other through plate tectonics, scientists can use the density of the plates to predict what will happen. Whichever plate is more dense will sink, and the less dense plate will float over it.
Explanation:
Hope this helps ( not copied and pasted, this answer was done by me so I don't know if it's good or not)