Answer:
Average specific heat capacity of metal = 0.57 J/g°C
Explanation:
Heat lost = Heat gained
Heat energy gained or lost, H = mcΔT
where m = mass of substance, c = specific heat capacity, ΔT = temperature change
Trial 1:
Heat lost by metal = -[2.746 g × c × ΔT]
ΔT = (26.3 - 72.1) °C = -45.8 °C
Heat lost by metal = -[2.746 g × c × (-45.8 °C)] = c × (125.7688)g°C
Heat gained by water = 15.200 × 4.18 × ΔT
ΔT = (26.3 - 24.7) = 1.6 °C
Heat gained by water = 15.200 × 4.18 × 1.6 = 101.6576 J
From Heat lost = Heat gained
c × (125.7688)g°C = 101.6576 J
c = 101.6576 J / 125.7688 g°C
c = 0.8083 J/g°C
Trial 2:
Heat lost by metal = -[2.750 g × c × ΔT]
ΔT = (26.2 - 72.2)°C] = - 46 °C
Heat lost by metal = -[2.750 g × c × (-46 °C)
Heat lost by metal = c × (126.5) g°C
Heat gained by water = 15.206 × 4.18 × ΔT
ΔT = (26.2 - 24.6) = 1.6 °C
Heat gained by water = 15.206 × 4.18 × 1.6 = 101.697728 J
From Heat lost = Heat gained
c × (126.5)g°C = 101.6977 J
c = 101.697728 J / 126.5 g°C
c = 0.8039 J/g°C
Trial 3:
Heat lost by metal = -[2.900 g × c × ΔT]
ΔT = (24.7 - 71.9)°C] = - 47.2 °C
Heat lost by metal = -[2.900 g × c × (- 47.2 °C)
Heat lost by metal = -[2.900 g × c × (- 47.2)°C] = c × (136.88)g°C
Heat gained by water = 15.201 × 4.18 × ΔT
ΔT = (24.7 - 24.5) = 0.2 °C
Heat gained by water = 15.201 × 4.18 × 0.2 = 12.708036 J
From Heat lost = Heat gained
c × (136.88)g°C = 12.708036 J
c = 12.708036 J / 136.88 g°C
c = 0.0928 J/g°C
Average specific heat capacity of metal = (0.8083 + 0.8039 + 0.0928) J/g°C / 3
Average specific heat capacity of metal = 0.57 J/g°C