A. NaCl(s) and O2(g)
B. 2NaClO3(s) —> 2NaCl(s) + 3O2(g)
C. moles NaClO3 = 100 g / 106.44 g/mol = 0.939 mol NaClO3
D. 0.939 mol NaCl (because the NaClO3 and NaCl are in a 1 to 1 ratio)
E. grams NaCl = 0.939 mol • 58.44 g/mol = 54.9 g NaCl
F. moles of O2 = 0.939 mol NaClO3 • (3 mol O2 / 2 mol NaClO3) = 1.41 mol O2
G. grams of O2 = 1.41 mol • 32 g/mol = 45.1 g O2
H. Percent yield = 10/45.1 • 100% = 22.2% yield
Answer:
47.36mL
Explanation:
Using Boyles law equation, which states that:
P1V1 = P2V2
Where;
V1 = initial volume (mL)
V2 = final volume (mL)
P1 = initial pressure (atm)
P2 = final pressure (atm)
Based on the provided information, V1 = 25.3mL, P1 = 152 kPa, V2 = ?, P2 = 0.804atm
First, we need to convert 152kPa to atm by dividing by 101
1kPa = 0.0099atm
152kPa = 1.505atm
P1V1 = P2V2
1.505 × 25.3 = 0.804 × V2
38.08 = 0.804V2
V2 = 38.08/0.804
V2 = 47.36mL
Answer:
1.73 M
Explanation:
We must first obtain the concentration of the concentrated acid from the formula;
Co= 10pd/M
Where
Co= concentration of concentrated acid = (the unknown)
p= percentage concentration of concentrated acid= 37.3%
d= density of concentrated acid = 1.19 g/ml
M= Molar mass of the anhydrous acid
Molar mass of anhydrous HCl= 1 +35.5= 36.5 gmol-1
Substituting values;
Co= 10 × 37.3 × 1.19/36.5
Co= 443.87/36.6
Co= 12.16 M
We can now use the dilution formula
CoVo= CdVd
Where;
Co= concentration of concentrated acid= 12.16 M
Vo= volume of concentrated acid = 35.5 ml
Cd= concentration of dilute acid =(the unknown)
Vd= volume of dilute acid = 250ml
Substituting values and making Cd the subject of the formula;
Cd= CoVo/Vd
Cd= 12.16 × 35.5/250
Cd= 1.73 M
In my opinion, the best answer among the choices listed above is the first option. The major reason for chemical bonding is <span>for atoms to gain the stability of the octet. In general, chemical reactions happen in order for substances achieve stability or appropriately achieve equilibrium.</span>