<h3><em>The coordinates of the image of point A(3,9) for dilation with the scale factor of 2/3 will be: A'(2, 6)
</em></h3><h3><em>
</em></h3><h3><em>Step-by-step explanation:
</em></h3><h3><em>
</em></h3><h3><em>Given the point A with the vertices (3, 9) i.e. A(3,9)
</em></h3><h3><em>
</em></h3><h3><em>As we know that If the scale factor is between 0 and 1, the image gets shrunk.
</em></h3><h3><em>
</em></h3><h3><em>In order to dilation with a scale factor of 2/3, just multiply the x and y coordinates of the original point (3, 9) by 2/3.
</em></h3><h3><em>
</em></h3><h3><em>i.e.
</em></h3><h3><em>
</em></h3><h3><em>(x, y) → (2/3 x, 2/3 y)
</em></h3><h3><em>
</em></h3><h3><em>so, the coordinates of the image of point A(3,9) for dilation with the scale factor of 2/3 will be:
</em></h3><h3><em>
</em></h3><h3><em>A (x, y) → (2/3 x, 2/3 y) = A (2/3 (3), 2/3 (9)) = A'(2, 6)
</em></h3><h3><em>
</em></h3><h3><em>Therefore, the coordinates of the image of point A(3,9) for dilation with the scale factor of 2/3 will be: A'(2, 6)</em></h3><h3><em /></h3><h2><em>( I got it from someone else )</em></h2>