<span>0.52%
First, let's convert that speed into m/s.
150 km/h * 1000 m/km / 3600 s/h = 41.667 m/s
Now let's see how much time gravity has to work on the ball. Divide the distance by the speed.
18 m / 41.667 m/s = 0.431996544 s
Now multiply that time by the gravitational acceleration to see what the vertical component to the ball's speed that gravity adds.
0.431996544 s * 9.8 m/s^2 = 4.233566131 m/s
Use the pythagorean theorem to get the new velocity of the ball.
sqrt(41.667^2 + 4.234^2) = 41.882 m/s
Finally, let's see what the difference is
(41.882 - 41.667)/41.667 = 0.005159959 = 0.5159959%
Rounding to 2 figures, gives 0.52%</span>
Answer:
The proton has much greater mass
Explanation:
- Protons and electrons are part of an atom
- Proton exists inside nucleus whereas electron keep moving around the nucleus
- Electrons have negative charge where as protons have positive charge .
Answer:
Distance will decrease and work will decrease:
F = m a Newton's Second Law
a = F / m decreasing force will decrease acceleration
S = 1/2 a t^2 = 1/2 (F / m) t^2 distance traveled will decrease as force decreases
W = F * S work will decrease as both force and distance decrease
Answer:
(1) Resonance
Explanation:
Resonance is the process whereby a system is set into vibration due to the vibration of a nearby system with larger amplitude. The frequency at which this vibration takes place is called the resonant frequency.
It is a phenomenon of amplification that occurs when the frequency of a periodically applied force is in harmonic proportion to the natural frequency of the system on which it acts.
Answer:
(7.8) x (9.8 m/s) = 76.44 m/s
during the time he spent falling.
Since his falling speed was zero when he 'stepped' off of the top,
he hit the ground at 76.44 m/s.
That's about 170 miles per hour.
I'll bet he left one serious crater!
I hope this helps too! :D
Explanation: