Answer:
<em><u>CaAsHO₄</u></em>
Explanation:
The data has a mistake in one of the values there. I believe the mistake is on the hydrogen. So, I'm going to assume the value of Hydrogen is 0.6%, so the total percent composition would be 100.1% (Something better). All you have to do is replace the correct value of H (or the value with the mistaken option) and do the same procedure.
Now, to calculate the empirical formula, we can do this in three steps.
<u>Step 1. Calculate the amount in moles of each element.</u>
In these case, we just divide the percent composition with the molar mass of each one of them:
Ca: 22.3 / 40.078 = 0.5564
As: 41.6 / 74.9216 = 0.5552
O: 35.6 / 15.9994 = 2.2251
H: 0.6 / 1.00794 = 0.5953
Now that we have done this, let's calculate the ratio of mole of each of them. This is doing dividing the smallest number of mole between each of the moles there. In this case, the moles of As are the smallest so:
Ca: 0.5564/0.5552 = 1.0022
As: 0.5552/0.5552 = 1
O: 2.2251/0.5552 = 4.0077
H: 0.5953/0.5552 = 1.0722
Now, we round those numbers, and that will give us the number of atoms of each element in the empirical formula
<u>Step 3. Write the empirical formula with the rounded numbers obtained</u>
In this case we will have:
Ca: 1
As: 1
O: 4
H: 1
The empirical formula would have to be:
<em><u>CaAsHO₄</u></em>