Lactose because it is a sugar made up of galactose and glucose.
Answer:
Pyruvate kinase
Explanation:
Yeasts convert glycerol and sugars into glyceraldehyde 3-phosphate (G3P) through independent pathways. Then, G3P forms pyruvate and, in some circumstances, pyruvate is converted in ethanol, which can be used as energy sources. If the mutation affects any reaction before G3P formation, it will only affect yeast growing either on sugar or pyruvate but not both.
Pyruvate kinase is the only enzyme on the list acting after G3P is formed and before pyruvate is formed. All other options are enzymes acting only in the formation of G3P from sugars. Meaning that only pyruvate kinase mutants will lack the ability to grow on both sugars and glycerol.
Testosterone<span> begins the development of secondary sexual characteristics.</span>
It's both! Scientists really can't agree on it.
There are choices for this question namely:
<span>a. K+ leaks into cells.
b. Voltage-gated Na+ channels become inactivated.
c. Voltage-gated K+ channels become inactivated.
d. Na+ reaches equilibrium across the neural membrane and stops leaking in.
e. Voltage-gated Na+ channels close.
The correct answer is "voltage-gated Na+ channels become inactivated". In the events concerning an action potential, the first event is a stimulus that depolarize the resting membrane potential up to the threshold. When the threshold is reached there will be opening of voltage gated Na+ channels wherein sodium can enter the cell and make the membrane more positive therefore called depolarization. After depolarization, voltage gated Na+ channels become inactivated and K+ leaks out of the cell making the cell less negative hence repolarization. After which, more and more K+ ions leaks out making the membrane more negative than the resting membrane potential hence hyperpolarization. When K+ channels are inactivated, the cell membrane will eventually go back to its resting membrane potential.</span>