The formula for working out speed is distance ÷ time.
55 km ÷ 2 hours = 27.5 km/h (average speed for first part of journey)
52km ÷ 5 hours = 10.4 km/h (average speed for second part of journey)
(27.5 + 10.4) ÷ 2 = 18.95 km/h (average speed throughout the journey)
Answer:
Please see below as the answer is self-explanatory.
Explanation:
The low band of the VHF TV Spectrum, spans channels 2-6, from 54 to 88 Mhz.
In the analog TV, in the Americas, the total bandwidth of any channel is 6 Mhz, with the visual carrier modulated in VSS (Vestigial Side Band) at 1.25 Mhz from the lowest frequency of the channel.
The aural carrier is located at 4.5 Mhz from the visual carrier, and is FM modulated.
For Channel 6, which spans between 82 and 88 Mhz, the visual carrier is at 83.25 Mhz, so the aural carrier is at 87.75 Mhz, which falls within the FM Band, so it is possible to listen the audio part of this channel in a FM radio receiver, even at a lower volume, due to the FM radio has a greater deviation than TV aural carrier.
Given that Oxygen has an oxidation state of 2 -, you can combine Mn 3+ with O 2- ions to form Mn2O3, and you can combine Mn 2+ with O 2- to form Mn2O2 which is MnO.
The other compounds imply oxidation states of N, Br and Cl that does not exist.
Therefore, the answer is the option D. MnO
<span>If the refrigerator weights 1365 and you are not exerting any vertical force on it, then the normal force is also 1365N. so Fn=1365
Fsf = Static frictional force = (coefficient of static friction) * (Normal force)
So the least for you could exert to move it is equal to the Fsf.
Fsf = (0.49)(1365N)</span><span>
</span>
Answer:
Detailed step wise solution is attached below
Explanation:
(a) wavelength of the initial note 2.34 meters
(b) wavelength of the final note 0.389 meters
(d) pressure amplitude of the final note 0.09 Pa
(e) displacement amplitude of the initial note 4.78*10^(-7) meters
(f) displacement amplitude of the final note 3.95*10^(-8) meters