Answer:
8.90
Explanation:
Density = mass ÷ volume
D = 222.50 g ÷ 25.00
= 8.9
The density of the unknown metal is 8.90.
Hope that helps.
Answer:
THE NEW PRESSURE OF THE HELIUM GAS AT 2.98 L VOLUME IS 124.8 kPa.
AT AN INCREASE ALTITUDE, THERE IS A LOWER PRESSURE ENVIRONMENT AND THE HELIUM GAS PRESSURE DECREASES AND HENCE AN INCREASE IN VOLUME.
Explanation:
The question above follows Boyle's law of the gas law as the temperature is kept constant.
Boyle's law states that the pressure of a fixed mass of gas is inversely proportional to the volume, provided the temperature remains constant.
Mathematically, P1 V1 = P2 V2
P1 = 150 kPa = 150 *10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 kPa * 2.48 / 2.98
P2 = 372 *10 ^3 / 2.98
P2 = 124.8 kPa.
The new pressure of the gas when at a height which increases the volume of the helium gas to 2.98 L is 124.8 kPa.
Answer:
1, 3, 4, and 5
Explanation:
the number would be the dot order!
Answer:
7.8 grams per cm
Explanation:
to get density you need the mass and volume then you divide them so
81.9 grams/10.5 cm gives 7.8g/cm
<u>Answer:</u> The osmotic pressure is 54307.94 Torr.
<u>Explanation:</u>
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
where,
= osmotic pressure of the solution = ?
i = Van't hoff factor = 3
C = concentration of solute = 0.958 M
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the osmotic pressure is 54307.94 Torr.