Answer:
There is no change in the proportion of the viewing audience<em> </em>
Step-by-step explanation:
<u>Aim : Determine if the viewing audience proportions changed </u>
Recorded audience proportions : ABC 31%, CBS 26%, NBC 27%, and independents 16%
sample size : 300
significance level ( ∝ ) = 0.05
Results yielding from sample size : ABC 97 homes, CBS 68 homes, NBC 91 homes, and independents 44 homes
<u>State the hypothesis of this sampling </u>
H0 : p1 = 0.31 or p2 = 0.26 or p3 = 0.27 or p4 = 0.16
Ha : at least pi ≠ 0.31 , 0.26 , 0.27 , 0.16
<u>next determine the test statistic </u>
X^2 = ∑ ( Oi - Ei)^2 / Ei ---------- ( 1 )
<u>For ABC </u>
Oi = 97 , Ei = 300* 0.31 = 93 , ( Oi - Ei)^2 = 16 , ( Oi - Ei)^2 / Ei = 16 / 93 = 0.17
<u>For CBS </u>
Oi = 68 , Ei = 300 * 0.26 = 78, ( Oi - Ei)^2 = 100, ( Oi - Ei)^2 / Ei = 100 / 78 = 1.28
<u>For NBC </u>
Oi = 91 , Ei = 300 * 0.27 = 81 , ( Oi - Ei)^2 = 100, ( Oi - Ei)^2 / Ei = 100/81 = 1.23
Independent
Oi = 44 , Ei = 300*0.16 = 48, ( Oi - Ei )^2 = 16 , ( Oi - Ei)^2 / Ei = 16 /48 = 0.33
back to equation 1
X^2 = ( 0.17 + 1.28 + 1.23 + 0.33 ) = 3.01
hence P-value ; P ( X^2 > 3.01 ) = 0.99
since P-value > ∝ ( 0.05 ) then we will fail to reject H0<em> i.e. there is no change in the proportion of the viewing audience </em>