To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as
The potential energy,
The volume,
The potential energy per unit volume is defined as the energy density.
The energy density related with electric field is given by
Here, the permitivity of the free space is
Therefore, rerranging to find the electric field strength we have,
Therefore the electric field is 2.21V/m
Protons, neutrons, and electrons<span> are the three main subatomic particles found in an atom. Protons have a</span>positive<span> (+) </span>charge<span>. An easy way to remember this is to remember that both proton and </span>positive<span> start with the</span>letter<span> "</span>P<span>." Neutrons have no electrical </span>charge<span>.</span>
Answer:
The answer is the mass of d
Answer:
Power = 124.50 W
Explanation:
Given that:
The Sound intensity of a speaker output is 102 dB
and the distance r = 25 m
For the intensity of sound,
where;
the threshold of hearing
I = 0.01585 W/m²
If we recall, we know remember that ;
Power = Intensity × A
rea
Power = 0.01585 W/m² × 4 × 3.142 × (25 m)²
Power = 124.50 W