If a teacher had 48 red pens and the ratio of red to blue pens she owns is 6:1, she will have a total of 56 pens
Let the number of red pens be R and the number of blue pens be B.
R = 48
R / B = 6 / 1
48 / B = 6 / 1
B = 48 / 6
B = 8
Total number of pens = Number of red pens + Number of blue pens
Total number of pens = R + B
Total number of pens = 48 + 8
Total number of pens = 56 pens
Therefore, she has a total of 56 pens
To know more about ratio
brainly.com/question/361700
#SPJ9
These are two questions and two answers.
Part 1. Fin the value of the ration of velocity C to velocity D.
Answer: 2
Explanation:
1) Formula: momentum = mass * velocity
2) momentum C = mass C * velocity C
3) momentum D = mass D * velocity D.
4) C and D have the same momentum =>
mass C * velocity C = mass D * velocity D
5) mass C = (1/2) mass D => mass C / mass C = 1/2
6) use in the equation stated in the point 4)
velocit C / velocity D = mass D / mass C
using the equation stated in point 5:
mass D / mass C = 1 / [ mass C / mass D] = 1 / [1/2] = 2
=>
7) velocity C / velocity D = mass D / mass C = 2
Part 2: <span>ratio of kinetic energy C to kinetic energy D.
</span>
Answer: 2
Explanation:
1) formula: kinetic energy KE = (1/2) mass * (velocity)^2
2) KE C = (1/2) mass C * (velocity C)^2
3) KE D = (1/2) mass D * (velocity D)^2
4) KE C / KE D =
(1/2) mass C * (velocity C)^2 mass C (velocity C)^2
--------------------------------------- = --------------- * ---------------------- = (1/2) * (2)^2
(1/2) mass D *( velocity D)^2 mass D v(velocity D)^2
= 4 / 2 = 2
Hydrogen has one electron in its outermost shell, while fluorine has seven electron in its outermost shell, hence both hydrogen and fluorine needs a single electron to complete its outermost shell.
That's why there is a single bond between hydrogen and fluorine.
Hence both hydrogen and fluorine share one electron with each other, so option "A" is correct.
Answer:
a. 5 × 10¹⁹ protons b. 2.05 × 10⁷ °C
Explanation:
Here is the complete question
A beam of protons is moving toward a target in a particle accelerator. This beam constitutes a current whose value is 0.42 A. (a) How many protons strike the target in 19 seconds? (b) Each proton has a kinetic energy of 6.0 x 10-12 J. Suppose the target is a 17-gram block of metal whose specific heat capacity is 860 J/(kg Co), and all the kinetic energy of the protons goes into heating it up. What is the change in temperature of the block at the end of 19 s?
Solution
a.
i = Q/t = ne/t
n = it/e where i = current = 0.42 A, n = number of protons, e = proton charge = 1.602 × 10⁻¹⁹ C and t = time = 19 s
So n = 0.42 A × 19 s/1.602 × 10⁻¹⁹ C
= 4.98 × 10¹⁹ protons
≅ 5 × 10¹⁹ protons
b
The total kinetic energy of the protons = heat change of target
total kinetic energy of the protons = n × kinetic energy per proton
= 5 × 10¹⁹ protons × 6.0 × 10⁻¹² J per proton
= 30 × 10⁷ J
heat change of target = Q = mcΔT ⇒ ΔT = Q/mc where m = mass of block = 17 g = 0.017 kg and c = specific heat capacity = 860 J/(kg °C)
ΔT = Q/mc = 30 × 10⁷ J/0.017 kg × 860 J/(kg °C)
= 30 × 10⁷/14.62
= 2.05 × 10⁷ °C
Answer:c
Explanation: the speed of object a changes but b travels at constant speed