Potential Energy (P.E) = Mass x
Acceleration due to Gravity x Altitude. Putting this value in the above equation we get, Dimensional Formula of
Potential energy= M1L2T-2.
Answer:
The height at which the object is moved is 10 meters.
Explanation:
Given that,
Force acting on the object, W = F = 490 N
The gravitational potential energy, P = 4900 J
We need to find the height at which the object is moved. We know that the gravitational potential energy is possessed due to its position. It is given by :
So, the height at which the object is moved is 10 meters. Hence, this is the required solution.
Answer:
Explanation:
<u>Uniform Acceleration
</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:
Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
It's known a train moves from rest (vo=0) to a speed of vf=25 m/s in t=30 seconds. It's required to calculate the acceleration.
Solving for a:
Substituting:
Answer: Volume = 1080m^3
Explanation:
Given that the prism has a 15 m by 18 m rectangular base and a height of 4 m
Volume is the product of length, breath and height. That is
Volume = L × B × H
Where
L = 18 m
B = 15m
H = 4m
Using the formula above gives:
Volume V = 18 × 15 × 4
V = 1080 m^3
Explanation:
Period P has units of seconds (s).
Length has units of meters (m).
Mass has units of kilograms (kg).
Acceleration has units of meters per second squared (m/s²).
Dimensional analysis:
s = √(m / (m/s²))
Therefore:
P = k √(L/g)
where k is a dimensionless constant.