Answer: A heat engine uses temperature differences which cause pressure changes to exert force on a moving part. A Carnot Process is a theoretical explanation of a process involving pressure and temperature changes during ,amongst other things, phase changes.
Explanation:
Answer:
11250 seconds or 187.5 mins
Explanation:
The formula to be used here is that of speed.
Speed (in m/s) = distance (meter) ÷ time (secs)
The speed provided is 32 meters per second
The distance provided will have to be converted to meters; 360 km = 360 × 1000 = 360000 meters
Thus,
32 = 360000 ÷ time
time = 360000 ÷ 32
time = 11250 seconds or 187.5 mins
It will take Naomi 11250 seconds to get to New York
Answer:
Explanation:
The cannonball goes a horizontal distance of 275 m . It travels a vertical distance of 100 m
Time taken to cover vertical distance = t ,
Initial velocity u = 0
distance s = 100 m
acceleration a = 9.8 m /s²
s = ut + 1/2 g t²
100 = .5 x 9.8 x t²
t = 4.51 s
During this time it travels horizontally also uniformly so
horizontal velocity Vx = horizontal displacement / time
= 275 / 4.51 = 60.97 m /s
Vertical velocity Vy
Vy = u + gt
= 0 + 9.8 x 4.51
= 44.2 m /s
Resultant velocity
V = √ ( 44.2² + 60.97² )
= √ ( 1953.64 + 3717.34 )
= 75.3 m /s
Angle with horizontal Ф
TanФ = Vy / Vx
= 44.2 / 60.97
= .725
Ф = 36⁰ .
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow
The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by
The density of the flow at the exit is 2.2721 kg/m³
Ok but y I thought it was upside down tho...