Answer: The bottom of the ladder is moving at 3.464ft/sec
Explanation:
The question defines a right angle triangle. Therefore using pythagorean
h^2 + l^2 = 10^2 = 100 ...eq1
dh/dt = -2ft/sec
dl/ dt = ?
Taking derivatives of time in eq 1 on both sides
2hdh/dt + 2ldl/dt = 0 ....eq2
Putting l = 5ft in eq2
h^ + 5^2 = 100
h^2 = 25 = 100
h Sqrt(75)
h = 8.66 ft
Put h = 8.66ft in eq2
2 × 8.66 × (-2) + 2 ×5 dl/dt
dl/dt = 17.32 / 5
dl/dt = 3.464ft/sec
Answer:
work done is -150 kJ
Explanation:
given data
volume v1 = 2 m³
pressure p1 = 100 kPa
pressure p2 = 200 kPa
internal energy = 10 kJ
heat is transferred = 150 kJ
solution
we know from 1st law of thermodynamic is
Q = du +W ............1
put here value and we get
-140 = 10 + W
W = -150 kJ
as here work done is -ve so we can say work is being done on system
It’s doesn’t change meaning it’s 0
I really need these points thx a lot
<h2>
Answer: 7020.117 m/s</h2>
Explanation:
The velocity of a satellite describing a circular orbit is<u> constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting, in this case, the Earth
.
the radius of the orbit (measured from the center of the planet to the satellite).
This means the radius of the orbit is equal to <u>the sum</u> of the average radius of the Earth and the altitude of the satellite above the Earth's surface .
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. It depends on the mass of the massive body (the Earth).
Now, rewriting equation (1) with the known values: