1). The equation is: (speed) = (frequency) x (wavelength)
Speed = (256 Hz) x (1.3 m) = 332.8 meters per second
2). If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.
If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.
If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.
3). The equation is: Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)
Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.
That's ' 200 k Hz ' .
Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised. They broadcast on several different frequencies,
and one of them is 198 kHz !
Recall that average velocity is equal to change in position over a given time interval,
so that the <em>x</em>-component of is
and its <em>y</em>-component is
Solve for and , which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.
Note that I'm reading the given details as
so if any of these are incorrect, you should make the appropriate adjustments to the work above.
Theories are usually backed up with a lot of evidence. If the evidence is well studied then it is useful information.
The portion of the flux leaves the curved surface of the cylinder is 60%.
<h3 /><h3>What are electrons?</h3>
The electrons are the spinning objects around the nucleus of the atom of the element in an orbit.
If a point charge is located at the center of a cylinder and the electric flux leaving one end of the cylinder is 20% of the total flux leaving the cylinder.
If 20% of the flux leave from one end, then another 20% will leave from another end.
So, the net flux through curved surface is
100 -20 -20 = 60%
Thus, the total flux leaves the curved surface of the cylinder is 60%
Learn more about electrons.
brainly.com/question/1255220
#SPJ1