Answer:
When looking at this model, and asking yourself the question, is PRB congruent to QSB? PRB is in fact congruent to QSB. Congruent means that two figures have the same shape/size, no matter if it's mirrioring or not it is congruent. In this image, PRB is one shape, and QSB is another. They have the exact same points and they're also the same shape, but one is flipped the right side up. It was also stated PQ and RS bisect eachother at point B, <p is congruent to <Q, and <R is congruent to <S proving all these connections make this figure conguent.
Step-by-step explanation:
I believe the answer is b
Hi there,
This is the original inequality equation:
So, we first need to find the critical points of equality, and we can do that by switching the less than sign to an equal sign.
Now, we multiply both sides by x + 1:
Then, we multiply both sides by x - 1:
Next, we subtract x² from both sides:
After that, we solve for x. We do this by adding -x to both sides and dividing by 2. Doing so gives us x = 0, which is our first critical point. We need to find a few more critical points by testing x = -1 and x = 1. Here is how we do that:
<span>x = <span>−1 </span></span>(Makes left denominator equal to 0)<span>x = 1 </span>(Makes right denominator equal to 0)Check intervals in between critical points. (Test values in the intervals to see if they work.)<span>x <<span>−1 </span></span>(Doesn't work in original inequality)<span><span><span>−1 </span>< x </span><0 </span>(Works in original inequality)<span><span>0 < x </span>< 1 </span>(Doesn't work in original inequality)<span>x > 1 </span><span>(Works in original inequality)
Therefore, the answer to your query is
-1 < x < 0 or x > 1. Hope this helps and have a phenomenal day!</span>