The enthalpy of vaporization of H2O is higher than the enthalpy of fusion of H2O, therefore vaporizing the same mass of H2O would require more heat/energy than melting the same mass of H2O.
Answer:
0.84 moles of oxygen are required.
Explanation:
Given data:
Mass of CO₂ produced = 37.15 g
Number of moles of oxygen = ?
Solution:
Chemical equation:
C + O₂ → CO₂
Number of moles of CO₂:
Number of moles = mass/molar mass
Number of moles = 37.15 g/ 44 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of oxygen and carbon dioxide.
CO₂ : O₂
1 : 1
0.84 : 0.84
0.84 moles of oxygen are required.
It allows you to determine the relation between the reactants and the products.
Answer:
17 protons, 20 neutrons, and 17 electrons.
Explanation:
A periodic table can be defined as the standard arrangement of chemical elements by atomic number, electronic configuration and chemical properties in a tabular form.
Generally, a proper representation of the mass number and atomic number of chemical elements is key and very important in chemistry.
Furthermore, as a rule, it should be noted that the mass number (nucleon number) is always larger than the atomic number(number of proton).
The mass number of this neutral atom of Cl-37 is 37 and we know that the atomic number (number of protons) of chlorine is 17. Also, the atomic number of an element is equal to the number of its electrons.
A neutral atom of Cl-37 has 17 protons, 20 neutrons, and 17 electrons.
Hence, a neutral atom of Cl-37 can be identified based on its number of protons because it represent its atomic number, which is what is used to differentiate an atom of an element from the atom of another chemical element.
<span>If I done the math correctly it is 3729J because you multiply 16.5 g by the 2260 J/g and get 3729 J</span>