Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:
where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]
where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
The answer isn't here. All sites say the answer is Only animals are composed of cells. More than one site says this.
Holes I helped
In a longitudinal wave the particle displacement is parallel to the direction of wave propagation. ... The particles do not move down the tube with the wave; they simply oscillate back and forth about their individual equilibrium positions.Answer:
Explanation: