<span>The gravity of earth depends on the magnetism from its core. as this magnetism increases, the magnitude of the gravity increases.</span>
To solve this problem we will apply the linear motion kinematic equations. From the definition of the final velocity, as the sum between the initial velocity and the product between the acceleration (gravity) by time, we will find the final velocity. From the second law of kinematics, we will find the vertical position traveled.
Here,
v = Final velocity
= Initial velocity
g = Acceleration due to gravity
t = Time
At t = 4s, v = -30m/s (Downward)
Therefore the initial velocity will be
Now the position can be calculated as,
When it has the ground, y=0 and the time is t=4s,
Therefore the cliff was initially to 41.6m from the ground
'Displacement' is the distance and direction between the starting point and
ending point, regardless of the path followed to get there.
A particle that's executing simple harmonic motion is always in the same place
where it was one time period ago, and where it will be later after another time
period has passed.
So its displacement during exactly one time period is exactly zero.
Answer:
Pascal Law's says that:
If the area of one end of a U-tube is A, and the area of the other end is A'. then if we apply a force F in the first end (the one of area A), the force experienced at the other end must be:
F' = F*(A'/A).
b) Now we can apply this to our particular case:
if the area of one end is 0.01m^2, and the area of the other end is 1m^2
Then we have:
A = 0.01m^2
A' = 1m^2
So, if now we apply a force F in the first end, the force experienced at the other end will be:
F' = F*(1m^2/0.01m^2) = F*100
This means that the force in the other end must be 100 times the force in the first end.