True : <span>There are numerous third-class </span>levers<span> in the human </span>body<span>; one example can be illustrated in the elbow joint</span>
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.
Answer:
D. "The net force is zero, so the acceleration is zero"
Explanation:
edge 2020
Answer: The correct answer is an emission line spectrum.
Explanation:
When the electrons are excited to the higher energy level, the energy is absorbed in this case.
When the electrons in the atom step down to lower energy levels in a thin cloud of hot gas then the radiation will emit.
The electron will lose energy in this case in the form of radiation. There will be an emission line spectrum.
Answer:
6.25 m/s
Explanation:
mass of man (m1) = 80 kg
mass of boy (m2) = 20 kg
mass of man and boy after collision (m12)= 20 + 80 = 100 kg
velocity of man and boy after collision (v) = 2.5 m/s
angle θ = 60 °
How fast was the boy moving just before the collision
?
- From the diagram attached, the first image shows the man and the boys motion while the second diagram shows their motion rearranged to form a triangle. With the momentum of the man and the boy forming the sides of the triangle.
- M₁₂ = total momentum after collision = m12 x v = 100 x 2.5 = 250
- Mboy = momentum of the boy before collision = m2 x Velocity of boy
- Mman = momentum of the man before collision = m1 x velocity of man
- from the triangle, cos θ =
cos 60 =
Mboy = 250 x cos 60 = 125
- recall that momentum of the boy (Mboy) also = m2 x Velocity of boy
therefore
125 = 20 x velocity of boy
velocity of boy = 125 / 20 = 6.25 m/s