The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8 is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,
The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Possibly, if you have list of densities and you have to match it. I can't think of any other scenarios in which it would be able to.
Hope I helped! :)
Downwards - from uphill towards the lowlands and eventually into the sea.
2m/s because the hockey puck is traveling at a constant speed ( acceleration is 0 ). Unless something acts on the hockey puck it will travel 2 m/s forever.
Answer:
2. 200N
3.50kg
4.700N
Explanation:
Weight is another word for the force of gravity
Weight is a force that acts at all times on all objects near Earth.
F=m*g
where g=acceleration due to gravity
2. due to the gravitational fields of the earth , assume gravitational acceleration=10m/s2
F=20*10= 200N
3.same as above
mass=Force/gravitational acceleration
mass=500/10 = 50kg
4.force=mass*gravitational acceleration
force=70*10=700N