The correct answer is "please"
Answer:
Step-by-step explanation:
To solve the question we refresh our knowledge of the quotient rule.
For a function f(x) express as a ratio of another functions u(x) and v(x) i.e
, the derivative is express as
from
we assign u(x)=lnx and v(x)=x^2
and the derivatives
.
Note the expression used in determining the derivative of the logarithm function.it was obtain from the general expression of logarithm derivative i.e
If we substitute values into the quotient expression we arrive at
-14 + (-15) = -14 - 15 = -29
Hope it helps !!! Brainliest if it is!!
Let the three gp be a, ar and ar^2
a + ar + ar^2 = 21 => a(1 + r + r^2) = 21 . . . (1)
a^2 + a^2r^2 + a^2r^4 = 189 => a^2(1 + r^2 + r^4) = 189 . . . (2)
squaring (1) gives
a^2(1 + r + r^2)^2 = 441 . . . (3)
(3) ÷ (2) => (1 + r + r^2)^2 / (1 + r^2 + r^4) = 441/189 = 7/3
3(1 + r + r^2)^2 = 7(1 + r^2 + r^4)
3(r^4 + 2r^3 + 3r^2 + 2r + 1) = 7(1 + r^2 + r^4)
3r^4 + 6r^3 + 9r^2 + 6r + 3 = 7 + 7r^2 + 7r^4
4r^4 - 6r^3 - 2r^2 - 6r + 4 = 0
r = 1/2 or r = 2
From (1), a = 21/(1 + r + r^2)
When r = 2:
a = 21/(1 + 2 + 4) = 21/7 = 3
Therefore, the numbers are 3, 6 and 12.