Answer:
(x, y) = (0, 1/2) or (1, 3)
Step-by-step explanation:
The first equation factors as ...
x(3x -y) = 0
This has solutions x=0 and y=3x.
__
<u>x = 0</u>
Using this in the second equation gives ...
2y -0 = 1
y = 1/2
(x, y) = (0, 1/2) is a solution
__
<u>y = 3x</u>
Using the expression for y in the second equation, we get ...
2(3x) -5x = 1
x = 1 . . . . . . . . . simplify
y = 3x = 3 . . . . using x=1 in the first equation
(x, y) = (1, 3) is a solution
_____
Interestingly, the (red line) graph of 3x^2 -xy = 0 produced by this graphing calculator has a "hole" at x=0, It says that point is (0, undefined). In a sense, y is undefined, in that it can be <em>anything</em>. A more appropriate graph would graph that equation as the two lines x=0 and y=3x.