Answer:
Here's what I get
Explanation:
(a) Intermediates
The three structures below represent one contributor to the resonance-stabilized intermediate, in which the lone pair electrons on the heteroatom are participating (the + charge on the heteroatoms do not show up very well).
(b) Relative Stabilities
The relative stabilities decrease in the order shown.
N is more basic than O, so NH₂ is the best electron donating group (EDG) and will best stabilize the positive charge in the ring. However, the lone pair electrons on the N in acetanilide are also involved in resonance with the carbonyl group, so they are not as available for stabilization of the ring.
(c) Relative reactivities
The relative reactivities would be
C₆H₅-NH₂ > C₆H₅-OCH₃ > C₆H₅-NHCOCH₃
v=fw (Assume for this example w is wavelength). w=v/f. w=100/1000= 0.1 m. The wavelength is 0.1 meters
Answer:
Explanation:The atomic number of sodium is 11. That is, the number of electrons in sodium is 11. Therefore, a sodium atom will have two electrons in the first shell, eight in the 2nd orbit, and an electron in the 3rd shell.
Answer:
The molecular formula of X is C8H9NO2
Explanation:
Step 1: Data given
exact mass of 151.0640
Molar mass of C = 12 g/mol
Molar mass of H = 1.00783 g/mol
Molar mass of O = 15.9949 g/mol
Molar mass of N = 14.0031 g/mol
Step 2: Calculate molar mass of C7H5NO3
7*12 + 5*1.00783 + 14.0031 + 3*15.9949 = 151.02695 g/mol
Step 3: Calculate molar mass of C8H9NO2
8*12 + 9*1.00783 + 14.0031 + 2*15.9949 = 151.06337 g/mol
Step 4: Calculate molar mass of C10H17N
10*12 + 17*1.00783 + 14.0031 = 151.13621 g/mol
The molecular formula of X is C8H9NO2
Answer:
See below
Explanation:
<u>Specific Heat of water</u> = 4.186 J/(g-C)
J/(g-C) multiplied by g and C results in J
4.186 * 540 * (95-32) = <u>142 407 .72 J</u>