Blue light will bend more than the others because it has a slightly greater refractive index. This is because blue light has a shorter wavelength and more energy, meaning it has to slow down more than the others when it hits the water.
Answer: chemical property
Explanation:
To solve this problem it is necessary to apply the concepts related to the Centrifugal Force and the Gravitational Force. Since there is balance on the body these two Forces will be equal, mathematically they can be expressed as
Where,
m = Mass
G =Gravitational Universal Constant
M = Mass of the Planet
r = Distance/Radius
Re-arrange to find the velocity we have,
At the same time we know that the period is equivalent in terms of the linear velocity to,
If our values are that the radius of mars is 3400 km and the distance above the planet is 100km more, i.e, 3500km we have,
Replacing we have,
Therefore the correct answer is C.
Answer:
Wn = 9.14 x 10¹⁷ N
Explanation:
First we need to find our mass. For this purpose we use the following formula:
W = mg
m = W/g
where,
W = Weight = 675 N
g = Acceleration due to gravity on Surface of Earth = 9.8 m/s²
m = Mass = ?
Therefore,
m = (675 N)/(9.8 m/s²)
m = 68.88 kg
Now, we need to find the value of acceleration due to gravity on the surface of Neutron Star. For this purpose we use the following formula:
gn = (G)(Mn)/(Rn)²
where,
gn = acceleration due to gravity on surface of neutron star = ?
G = Universal Gravitational Constant = 6.67 x 10⁻¹¹ N.m²/kg²
Mn = Mass of Neutron Star = Mass of Sun = 1.99 x 10³⁰ kg
Rn = Radius of neutron Star = 20 km/2 = 10 km = 10000 m
Therefore,
gn = (6.67 x 10⁻¹¹ N.m²/kg²)(1.99 x 10³⁰ kg)/(10000)
gn = 13.27 x 10¹⁵ m/s²
Now, my weight on neutron star will be:
Wn = m(gn)
Wn = (68.88)(13.27 x 10¹⁵ m/s²)
<u>Wn = 9.14 x 10¹⁷ N</u>