Answer:
In polar Covalent bonds, the electrons which are in bonded shifts towards an atom which has more valance electrons.
<u>Explanation:</u>
We know if an atom takes the electron it acquires a negative charge whereas if it gives an electron it acquires a positive charge in the ionic bond. But here we are talking about covalent bonds. Covalent bonds are those in which atoms share the electron instead of completely giving off the electron. If the atoms are identical in case of covalent bond that is 2 hydrogen atoms then this type of bonding is called pure covalent bonds but if the atoms linked in covalent bonds are different then it is called polar covalent bonds.
In this, the bonding electrons will shift towards an atom which has more valence electron thereby acquiring the partial negative charges and the other atom will acquire a partial positive charge. For example, HCl. In this the Chlorine atom is having more valence electron than hydrogen atom, and hence Chlorine atom has a partial negative charge and Hydrogen atom has a partial positive charge.
From the equation:
4mol Li react with 1 mol O2
Molar mass Li = 7g/mol
mol in 84g Li = 84/7 = 12 mol Li
From the equation - 12 mol Li will react with 3 mol O2
At STP 1 mol O2 has volume = 22.4L
<span>
At STP 3 mol O2 has volume = 3*22.4 = 67.2L O2 gas will react. </span>
Answer:
Large-scale natural disasters
Explanation:
The emergency situation that rescue workers could be in that would make it difficult for them to get energy to their electrical devices is "Large-scale natural disasters"
Large-scale natural disasters are very destructive and devastating. Their impact and effect can range from destruction of infrastructures, properties, social amenities and even ecosystems. When such disasters break out, they destroy things and which leads to difficulty in accessing certain amenities. Rescue workers even find it difficult to access energy for their electrical devices - because there is power outage.
Some of these large-scale natural disasters are earthquakes, tornadoes, hurricanes, floods, etc.
Answer:
Only changes in temperature will influence the equilibrium constant . The system will shift in response to certain external shocks. At the new equilibrium will still be equal to , but the final concentrations will be different.
The question is asking for sources of the shocks that will influence the value of . For most reversible reactions:
- External changes in the relative concentration of the products and reactants.
For some reversible reactions that involve gases:
- Changes in pressure due to volume changes.
Catalysts do not influence the value of . See explanation.
Explanation:
.
Similar to the rate constant, the equilibrium constant depends only on:
- the standard Gibbs energy change of the reaction, and
- the absolute temperature (in degrees Kelvins.)
The reversible reaction is in a dynamic equilibrium when the rate of the forward reaction is equal to the rate of the backward reaction. Reactants are constantly converted to products; products are constantly converted back to reactants. However, at equilibrium the two processes balance each other. The concentration of each species will stay the same.
Factors that alter the rate of one reaction more than the other will disrupt the equilibrium. These factors shall change the rate of successful collisions and hence the reaction rate.
- Changes in concentration influence the number of particles per unit space.
- Changes in temperature influence both the rate of collision and the percentage of particles with sufficient energy of reaction.
For reactions that involve gases,
- Changing the volume of the container will change the concentration of gases and change the reaction rate.
However, there are cases where the number of gases particles on the reactant side and the product side are equal. Rates of the forward and backward reaction will change by the same extent. In such cases, there will not be a change in the final concentrations. Similarly, catalysts change the two rates by the same extent and will not change the final concentrations. Adding noble gases will also change the pressure. However, concentrations stay the same and the equilibrium position will not change.
Answer:
Iron
Hope this helps! Stay safe!
(Plz vote me as brainliest)