The percent yield of this reaction is calculated as follows
Mg3N2 + 3H2O =2NH3 + 3Mgo
calculate the theoretical yield,
moles=mass/molar mass
moles Mg3N2= 3.82 g/100g/mol= 0.0382 moles(limiting regent)
moles of H2o= 7.73g/18g/mol = 0.429 moles ( in excess_)
by use of mole ratio between Mg3N2 to MgO which is 1:3 the moles of MgO = 0.0382 x3 = 0.1146 moles
mass =moles x molar mass
the theoretical mass is therefore = 0.1146mole x 40 g/mol = 4.58 grams
The % yield = actual mass/theoretical mass x1000
= 3.60/4.584 x100= 78.5%
Answer:
Saturated solution
Explanation:
Saturated solution is the solution in which no more solute can be dissolved at a particular temperature.
A amount of the solute, potassium nitrate is dissolved at elevated temperature and on cooling, it precipitates. It means that the solution is saturated at that temperature. <u>Precipitation of the solute at lower temperature indicates that the solution is saturated solution.</u>
To calculate percent composition, you first need to find the molar mass of C (carbon), H (hydrogen) and O (oxygen).
C is 12.01
H is 1.00
O is 16
Then multiply each by the number of atoms of each element in the formula (the number that comes after each element in the equation for example C6 means 6 carbon atoms.
C: 12.01 x 6= 72.06
H: 1x12= 12
O: 16x6= 96
Then add them up.
72.06+ 12+ 96= 180.06
Now find the percent composition of carbon.
72.06/ 180.06 x 100= 40.01%
So the answer is C 40%.
Answer:
Kc = 0.075
Explanation:
The dissociation (α) is the initial quantity that ionized divided by the total dissolved. So, let's calling x the ionized quantity, and M the initial one:
α = x/M
x = M*α
x = 0.354M
For the stoichiometry of the reaction (2:1:1), the concentration of H₂ and I₂ must be half of the acid. So the equilibrium table must be:
2HI(g) ⇄ H₂(g) + I₂(g)
M 0 0 <em> Initial</em>
-0.354M +0.177M +0.177M <em>Reacts</em>
0.646M 0.177M 0.177M <em>Equilibrium</em>
The equilibrium constant Kc is the multiplication of the products' concentrations (elevated by their coefficients) divided by the multiplication of the reactants' concentrations (elevated by their coefficients):
Kc = 0.075