Answer:
3.33, 4.84
Explanation:
A) Actual coefficient of performance can be calculated by the formula stated below
Actual COP = heat delivered/ work required
Actual COP = 2,000/600
Actual COP = 3.33
B) Th = High temperature = 80°C + 273 = 353K
Tl = Low temperature = 7°C + 273 = 280K
The theoretical maximum coefficient of performance can ve calculated by the formula
Theoretical COP = Th/(Th-Tl)
Theoretical COP = 353/(353-280)
Theoretical COP = 353/73
Theoretical COP = 4.84
Conduction is slower in liquids and gases.
Liquids it is convection which transmits more heat.. quicker...
Materials which are good conductors of thermal energy are called thermal conductors.
metals are good thermal conductors.
False not radioactive isotope will have a half-life
Answer:
A: 1.962
B: 3.924
Explanation:
g = G *M /R^2
g = 9.807*M/R^2 the gravitational constant of ground level on earth is about 9.807
g = 9.807*5lbs/R^2 the average brick is about 5 pounds.
g = 9.807*5*10^2. I'm assuming the height is around ten feet to help you out.
with these numbers plugged in you get an acceleration of 0.4905 a final velocity after 4 seconds 1.962. It's height fallen after 4 seconds is 3.924.
( M = whatever the brick weighs it's not specified in the question)
(R = the distance from the ground or how high the scaffold is)
(hopefully you can just plug your numbers in there hope this helps)
It is very difficult for an atom to accept a proton. It can only be done under very special circumstances. So A and C are both incorrect. I don't see how D is possible. The atom does lose 1 electron, but how it gets 21 is think air.
The answer is B which is exactly what happens.