Yes it does, uh huh. It slows down as it rolls. That's a fact.
In order for the ball to roll forward, it has to push grass out of the way. That takes energy. To bend each blade of grass out of its way, the ball has to use a tiny bit of the kinetic energy that it has, so it gradually runs out of kinetic energy. When its kinetic energy is all gone, it stops moving.
Use the eq. of Young modulus Y=(F/A)/(∆l/lo)
dimana ∆l is the elongation of wire, lo is its initial length.
So ∆l = (F/A)lo/Y.
∆l = (1000N/(6.5 × 10^-7 m^2))×(2.5m)/(2.0 × 10^-11 N/m^2)
Use calculator to finish it.
Answer:
3875J
Explanation:
Energy is defined as the power × time
And it's defined as
Power = IV - I- current and V- voltage
Now quantity of electricity; Q = I × t
Where I is current and t is time
Now Energy = I ×V×t = V× I×t = V× Q;
where Q is quantity of electricity 775C and V is 5.0volt
Hence 775 × (5) =3875J